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Abstract

An optimal design problem solved previously for an elastic rod hanging under its own weight found the distribution
of the cross-sectional area that minimized the total potential energy stored in an equilibrium state, with the admissible
designs bounded above and below and also subject to the constraint of prescribed total volume. This work solves the
companion problem of the design that stores the maximum potential energy under the same constraint conditions. The
method used is based on a comparison theorem for sandwich structures.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. The maximum energy design problem

The problem solved here is the determination of the distribution of the cross-sectional area 4(X) and
associated axial displacement U(X) which maximizes the total equilibrium potential energy of an elastic rod
hanging vertically under its own weight:

mjtx(muin(H(U;A))) (la)
where
H(U;A):/O {%EA(X)SZ(X)—pgAU(X)}dX (1b)

with the axial strain ¢(X) = dU/dX. The admissible designs for cross-sectional area are positive, piecewise
continuous functions, bounded from above and below and satisfying the integral constraint of prescribed
total volume:

0< 4, <A(X) < Ay;

¢ - - (Ic)
/ AX)AX = L4, A) <A < A4,
0
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Kinematically admissible axial displacement functions U(X) are continuous functions with piecewise
continuous first derivatives satisfying displacement boundary conditions

Uu)=0, UL)=4 (1d)
This problem is a companion to one solved earlier (Warner, 2000, 2001):
min(min(11(U; 4)))

under the same conditions on 4 and U. A reviewer of one of these papers suggested that it might be more
interesting physically to find the design that stored the maximum rather than the minimum potential energy
in the rod. This paper shows how that question can be answered. The method is not the Pontryagin
Maximum Principle used in Warner (2000, 2001) but is based on a comparison theorem for sandwich
structures that characterizes an optimal design if one exists. I note that the “min—-min” problem was solved
essentially first by Fosdick and Royer-Carfagni (1996) in the context of mixture theory with a concentration
density rather than area as the design variable; their solution was found by a different method than mine.

The elasticity problem has solution that can be characterized by the Principle of Minimum Potential
Energy for each given area distribution: among all kinematically admissible displacement functions, the
solution displacement (which is unique) makes the functional IT an absolute minimum. The Euler-Lag-
range equation for this variational principle is the equilibrium equation on force per unit length written as a
second-order differential equation on U:

% (EA%) + pgd =0 (2a)
Introduction of the (continuous) axial force function P(X) and the elastic law P = EA¢ allows us to write
this last equation in the form
P d
dx dx

Three conclusions which will be useful later follow. First, from the elastic law, since P must be con-
tinuous, any discontinuity in 4 must occur where ¢ is also discontinuous unless P = ¢ = 0 at the point of
discontinuity. Second, since 4 > 0, P is monotone decreasing and so can have at most one zero. That is, the
rod can be all in tension or all in compression or may be partly in tension and partly in compression with
the tension side at the top of the rod next to the end X = 0. Lastly, since 4(X) occurs homogeneously in the
equilibrium equation, A(X) can be scaled by any multiplicative factor without changing the solution for
U(X). The value of the potential energy functional IT is then subject to the same scaling as 4.

A nondimensional form of the problem is stated next. The comparison theorem is then derived. Ar-
guments based on the continuity of the axial force show that a design satisfying the comparison theorem
must be continuous and must consist of one-to-five subdesigns in a particular order, for a total of 12
possible cases depending on the parameters of the problem. A master area function and its associated axial
displacement are constructed from which the equations for all 12 cases can be derived. The nature of the
solution to these equations is discussed with those that can be solved in closed form presented explicitly.

The solution procedure for the problem when no upper bound on section size is prescribed will be
summarized. The solution for the hanging rod with its lower end free will also be discussed.

(Ede) = —pgd (2b)

2. Nondimensionalization—the comparison lemma for the rod

The rod problem falls into the class of optimal design problems for sandwich structures: those for which
the elastic stiffness (here £4) and the body force or load coefficient (pgd) are both linear in the design
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variable (4). Construction of the solutions is based on a comparison theorem for sandwich structures of a
type derived by Prager and Taylor (1968) without upper and lower bounds on the design variable and by
Prager (1971) with a lower bound. The latter was used by Cardou and Warner (1974) to develop a design
rule for framed structures vibrating at a given frequency. Here the theorem characterizing globally optimal
solutions is proven with both bounds present and applied to the rod problem.

It is best to nondimensionalize the problem in order to keep the notation as simple as possible in the
analysis. Change from {X,4,U,P,¢ I} to {x,a,u,p,n,n} by setting

X =Lx; AX)=A4alx); UX)= %Lzu(x)

PX) = pglple); e(X) = "5 n() ()
o p2g2L3Z .

I(U;4) = Tn(u,a)

Because of the scaling property on 4(X) mentioned in Section 1, the choice of the reference area 4 is
arbitrary, with 4, or 4, natural choices. In Warner (2000) (with a similar construction occurring in Fosdick
and Royer-Carfagni (1996)) it was taken for the min—min problem as a weighted harmonic mean of the
bounding values with the weighting ratios dependent on all three of 4, 4, and 4. I shall not make a choice,
however, but leave it unspecified so that the dependence of the results on the ratios of the area parameters is
clear. Comparison of the energy values here to those in Warner (2000) will require accounting for the area
scaling.

In this process, the nondimensional ratio pgL/E has been incorporated in the changes of variables rather
than left as a parameter in the statement of the problem. The value of this ratio for a rod five meters long
made of steel with pg = 77 kN/m and E = 200 GPa is about 2 x 107°. The value of the nondimensional end
displacement ¢ will then equal about 5000 for an actual elongation 4 =0.01ZL and about 500 for
A =0.001L. Thus |0 can be “large”—even a “compression’ apparently much, much greater than the
“undeformed length” of 1.

In the new notation the problem becomes that of finding a(x) and u(x) such that they solve

max [muin(n(u;a) = /01 a(x)A(x) dx)} (4a)
with the energy density function
) = 31P(x) — ul) (4b)
and
%—m u(0) =0, u(l) :5:ngLz (40)
0<a <alx)<a;
(4d)

1
/ a(x)dx =a,a; < a < a,
0

Here (ay,a,a,) = (4,,4,4,)/A. The equilibrium equation becomes

-t -2(o2) -
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The derivation of the comparison theorem follows. Suppose u*(x) solves the elasticity problem for the
design a*(x) and u*™(x) solves it for & (x). Then the difference between the two actual solution values of the
potential energy can be written and transformed as follows:

1 1 1
n(u*;a*) — n(u™;a™) = / {a*X" —a” 2" }dx = / a™{r =2+ / {a* —a”}A"dx
0 0 0

1 1
=n(u';a™) — n(u™;a™) + /10/ {a* —a™}dx + / {a" —a” {1 — Ao}dx
0 0

Here /y is any number. The first two terms taken together are positive by the Principle of Minimum Po-
tential Energy for the design a** since u* is admissible in that variational competition. The next integral will
be zero if both a* and a* satisfy the fixed-volume constraint. In the last integral, the first factor must be
nonnegative for all admissible a** wherever a* = a, and nonpositive wherever a* = a;. Thus we have the
following theorem.

Comparison Theorem. Suppose that, for an admissible design a*(x) and its associated elastic solution functions,
there exists a number Ay such that

2(x)— o =0 wherever a*(x) = a,
A (x) — <0 wherever a*(x) = a

2(x) — Ao =0 wherever a; < da*(x) < ay

Then the last integral as well as the first two terms in the difference of the potential energies will be nonnegative
for all other admissible designs a**(x) and so a*(x) will be a solution of the maximum stored potential energy
problem.

Designs a(x) that satisfy these conditions are easy to construct. They must be continuous and are made
up of standard pieces joined together in which either a(x) is at one of its bounds or else the associated
energy density A(x) is a constant Ay. There are 12 cases in all, of which seven must be considered in full
detail; the other five can be found from the solutions of members of the first seven by changing the sign of
the prescribed deflection and appropriately interchanging values of the solution terms. The best way of
organizing the information that I have found is not by constructing each type independently but by con-
structing a ““‘master”’ area function and its associated displacement covering all possibilities without regard
to the displacement boundary conditions or the integral constraint and then showing how each case can be
obtained by translating and scaling the independent variable in the master functions to put the endpoints of
the rod at their proper positions so that the boundary conditions are satisfied and the volume constraint is
met.

3. Continuity of comparison theorem designs

As stated earlier, the area a(x) and the strain 7(x) must be continuous or simultaneously discontinuous
except possibly for a case where p and 7 vanish at a discontinuity in a. This last possibility is ruled out by
the construction given later. That a discontinuity cannot occur where p is not zero in a comparison theorem
design follows from the fact that the product of @ and n must be continuous at such a point and so the strain
on the side of the join with larger a value must be less than the strain on the side with smaller a. But then the
value of A(x) on the side with larger a would also be less than that on the side with smaller « and so violate
the comparison theorem conditions on the sign of 4 — Jy in the different regions.
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Thus a(x) must be continuous unless the exceptional case of p = 0 at the jump occurs. Even if this were
possible, however, note that #(x) must be zero there and so 1 and 1 would be continuous even if a were not.

4. Solution forms in regions where a(x) or A(x) is constant

In an interval where a(x) is any constant, the equilibrium equation becomes #” = —1 so that the dis-
placement, strain, and energy density have the forms
1

u(@) = =5 (=% +ix %) +a

nx) =1 —(x—x) |

M) = (6= 2 = 20(x— 5) 5 7 — (6)

1,
=n*(x) - (7/2 + u>

where X is any point of the interval and #, # are constants of integration giving the values of the strain and
displacement at x.

In an interval where A(x) has a constant value Ay, the formula defining A becomes a differential equation
to be solved for u(x). The equilibrium equation then determines a(x). The results are

u(x) = %(erfc)z — o
n=x+Xx (7

a
ax) (x+%)°
where x and & are constants of integration to be determined along with the proper value for 4y. The point
x = —X cannot lie in the interval if a(x) is to remain bounded.

There are two branches to the curve a(x), one on either side of the point —%. In any interval of this type
either the branch where x + % > 0 or the branch where x + X < 0 must be selected. By examining the de-
rivative of a(x) in each interval, one finds that a(x) decreases monotonically in the former case with #(x) and
p(x) = a/(x + x) positive there with the opposite results holding where x + ¥ < 0. Thus the rod is in tension
in a x +x > 0 interval and in compression in a x +x < 0 interval.

This means that p(x) can never be zero in a 1 = 4, interval including its endpoints. Since p is mono-
tonically decreasing, it follows that if both types of 1y intervals are present, the tension region must lie
above the compression region and be joined to it by a constant section region. This latter must necessarily
have a(x) at its lower bound value, since a(x) decreases in the tensile region and increases in the com-
pressive. Moreover, since A(x) is continuous it must be equal to 4y at the ends of this minimum section
region. It will then be less than /4, throughout the region since its graph is a parabola concave upward, one
of the conditions for a comparison theorem design. More, p and # must vanish at the midpoint of this
region.

It follows that a region at maximum section size must have one end at x = 0 or x = 1 and the other joined
continuously to a /o region. A region at minimum size may also be at either end of the rod joining a o
region at its other end or (as we have just shown) lie entirely within the interval between two 4, intervals. A
Ao interval can occupy all of (0, 1) or be part of a number of different orderings involving two to five re-
gions. Since the whole rod cannot be at maximum or minimum size because of the fixed volume constraint
and since we have the monotone nature of p(x) to consider, we can conclude that the only possibilities must
be drawn by starting somewhere in the ordering a,—4, (with decreasing a)-a;—/A (with increasing a)-a,
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again, with the ending point somewhere later in this sequence. There are 12 such choices possible: two with
A = J for all x, one totally in tension, the other in compression; four two-region designs, a,—4¢, Ao—ay, a;—4o
and Z¢—a»; three with three regions, a,—Ao—a;, Ag—a;—4¢ and a;—Ay—ay; two with four regions, a,—24p—a;—4¢ and
Ao—a1—Ao—ay; and one with all five. Though each of these can be constructed directly for x in (0, 1) using
continuity of a, , and A at the join points together with the displacement boundary conditions and the
volume constraint to determine all the constants of integration, the whole computation set can be organized
by computing a master area function on the whole line for the ordering of the five possible regions given
above and then showing how the rod solutions can be found by imposing the boundary and constraint
conditions to show where on the line the x = 0 and x = 1 points should lie. This construction is given next.

5. The master generating functions for comparison theorem designs; the equations for the 12 cases

I construct a function a*(y), —o0o < y < +o0, that is bounded above and below: a; <a*(y) < a, even
about y = 0 which is taken as the midpoint of the region at minimum section size a; and consists of five
sections in the order discussed above. If the endpoints of this middle section at minimum size are taken at
y = +1, then it is an exercise in algebra from the continuity conditions at either end of the /, regions to
show that the other ends of those regions must lie at y = £(2 — a), « = \/(a1/a2) < 1, and to determine the
other constants of integration (except for the value to pick for Ag):

a, yg*(zia)
a/2+y), -Q2-a)<y< -1
a'(y) =4 a, -1<y<1 (8)
al/(2—y)2, 1<y<2—ua
as, 2—a<gy

The corresponding displacement, strain, and Lagrangian density functions are

2~ 3201~ ) 4
@y
u'(y)+ = 1—%)}2 9)
@y
2~ 300~ ) f
21— )+
dur* 24y
o) =g, =17 (10)
2(l—a)—y

2(1 =) + ) — o
| 0
R G ER (11)
0

201 —2) -y -2
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Graphs of these functions are given in Figs. 1-4. Solutions for the rod are found from these by setting
¥ = (» —»)x+»m = yx + » so that the x-interval (0, 1) maps onto the y-interval (31, 3»). The values of the
(1, ») as well as the value of 4y are determined by applying the boundary conditions and volume constraint
to a(x) = a*(yx +»), u(x) + Ao = y[u* (yx +y1) + Ay]. Expressed in terms of the universal functions, these
conditions become

do = u(0) + 2o =y~ [u*(n) + 4]
6 =y [(u (») + 4) — (u*(n) + 4)] (12)
va= [ a (y)dy

The first of these determines 7y once the other two have been solved for (y1, y»). Table 1 presents the ranges
for (31, y») for each case as well as the form for computing 4y. Fig. 5 shows the regions of the (1, y») plane
where the values for each case lie.

a*(y)

l

[

\

|

|

|

|

P

[ y
1 2-a

Fig. 2. The master displacement function u*(y) + 4;.
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n* (y)

Fig. 3. The master strain function n*(y).

A (y) - A

-2-o)

Fig. 4. The master energy density function A*(y) — A;.

The other two equations for each case are listed next, with the first equation coming from the dis-
placement boundary condition at x = 1 and the second from the fixed-volume integral constraint. The first
involves the parameters ¢ and o but not a; the second involves o and a but not the extension 9.
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The (v, ),) ranges and the /, formula for cases (1)—(xii)

Case y range ), range 2920, 7 =2 — 31
) —2—a) <y < -1 —2-a) <y < -1 24n)
(ii) l<y<(2-—0a) l<p<(2-—oa) 2-n)
(iii) < —(2-0a) —2-a) <y < -1 202 — 2(1 — o) + 3]
(iv) l<y<(2-0a) (2—0a)<n 2-n)
) —2-a) <y < -1 “l<p<l 24n)
(vi) —-l<y<l1 l<y<(2-a) 22—yt
(vii) < —(2—2) “l<p<l 222 - 2(1 —a) + 3
(viii) -l<y <1 2—a)<m 2 -y}
(ix) n<—(2—0) l<y<(2-0) 202 — 2(1 — o) + )
(x) -2-a) <y < -1 2—a)<m (2—}—)}1)2
(xi) —2—a) <y < -1 l<m<(2-a) 24n)
(xii) n<—-2-a) 2—a) <y 202 = 2(1 — o) + 3]
A
(xii)
AN
« (vill) (viii) )
>0
/ N
AN
2-a i
(if)
(ix) (m {vi)
(vi)
AN 1 /
) N\ /
(vii) )
N\ /
N | s
2-« 1 .
>0 / 2-a
) 7/
(vii) (v) S,
/
-1
(iii) @
“(2-)

Fig. 5. Regions in the (|, 3») plane where cases (i)-(xii) provide the optimal solution.
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Case (1):
2V25 =(2 +yz) 2+n)
dy = rai
2—|—y)2 2+1)(2+x)
Case (ii):

2V25— 2- yz) -2-n)
vai

Y = we

Case (iii):
2% = (2 +y2) — 202 + [2(1 - cx) +n]
R
a
=—a2(1 —a) + 3] — 2 +1y2)
Case (iv):
226 =202 = 2(1 =) =y = (2 = 3)’
a
va=—a2(1 — o) — )] — 2 —lyl)
Case (v):
2))25—2 y2 (2 +y1)
=ay+ 2 + D
Case (vi):
2% =02-»n)"-2-1)
va=—ay + A
(2-»)
Case (vii):

{2«/25 =(2-33) -2+ 2(1 — o) + 3
va=aiy, — ax2(1 — o) + n1]

Case (viii):
{ 2920 =202 — 2(1 — o) — y)> — (2 —?)
va = —aiy — ax2(1 — o) — p]
Case (ix):
{ 220 = (2—p) =22+ 2(1 —a) + ]

7a = —a2(1 — o) + ] +rlyz)

(14)

(16)

(19)

(20)
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Case (x):
226 =202 = 2(1 —2) = po]' = 2+ 3)’
va = —ay[2(1 — o) — ] + ﬁ (22)

Case (xi):

225 =02-») - Q2+n)
ap a (23)

O SRR
Case (xii):
225 =21 — o) + 3]’ = 2(1 — &) — o]’
{ya:—a2[2(1—oc)—yz]—az[Z(l—oc)—i—yl] (24)

Establishing a procedure for the solution of these equations is straightforward. Except for a cubic
equation arising from the volume constraint in case (xi), all equations after clearing of fractions are linear
or quadratic. A geometric interpretation of the solutions as occurring at the intersection of a conic section
(mostly hyperbolas) with another conic or straight line can be made and guide the eventual need for nu-
merical solution in particular cases; cases (i), (ii), and (xii) are solvable in closed form.

Only the odd-numbered cases and case (xii) must be analyzed in detail. The solutions for the even-
numbered cases (ii)—(X) can be found from the solutions for the odd-numbered one just above it in the
listing. If (31, 3») is the solution to an odd-numbered case (1)—(ix) for given ¢ and a, then (—y,, —y;) will be a
solution to the associated even-numbered case for —0 and a; moreover, the end displacement ¢ will be
positive for the odd numbers, always representing extension, so that the even-numbered cases represent
compressive states. The same solution property holds for each of (xi) and (xii) individually; all solutions for
0 = 0 come from (xi) or (xii). These results follow from showing that the interchange of values and signs
transforms the equations of one case to another for (i) to (x) and does not change the equations for (xi) and
(xii) except for the sign of 9.

The equations involving ¢ are quadratic with the one for case (i) reducing to a linear equation once the
positive factor y = y, — y; is divided out. The equations for (vii), (xi), and (xii) have hyperbolas as graphs.
Those for (iii), (v) and (ix) graph as hyperbolas or ellipses depending upon the value of §.

The prescribed volume equations also graph as hyperbolas in cases (i), (iii), (v), and (ix) but as straight
lines for (vii) and (xii). For (xi) a cubic equation occurs; its graph has symmetry properties that aid in its
analysis.

The scaling property of the area function is manifest from these volume equations: only the ratio of the
area parameters is needed. We have already introduced o where o> = a;/ay; the ratio a/a, will be called ©
and the equations rewritten using « and .

6. The ranges of (0, v) where each case is valid and the basic solution procedures

The next step in the analysis is the determination of the ranges of values of 6 and v for which each case
occurs. This information is presented in Fig. 6 by displaying it as regions in the (6, ) plane for 6 > 0 where
the cases listed in the figure provide the optimal solution; reflection in the 6 = 0 axis will provide the regions
for 6 < 0. The boundaries between the regions are found easily using the information in Fig. 5 about the
common y; or ), value at the boundaries.
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3

(i)
1+a
2(1-a)
v /I
| (iti)
|
|
|
b
| (vii)
|
12— | 77‘|_________' ——
-2 44— =————2>
P |
| |
: |
l
(ix) (xii) |
1-a? ] |
23-a)f (xi) | | v
o? f . o a+1/2 1
y N
o(l+a) __oz___
-  2-q
3-o

Fig. 6. Regions in the (7, ) plane for 6 > 0 where the seven basic cases provide the optimal solution.

The closed-form solution for case (i) can be found by solving the volume equation for y, as a function of
y, and then substituting in the displacement equation. This is most easily done by introducing new variables
(z1, z2) equal to (2 + yy, 2 + »») as the natural combinations appearing in the case (i) equations. Indeed all
the cases have certain obvious combinations of the y’s that should be used to simplify the equations and the
discussion of their properties. The transformations to the z’s appropriate for each case are given in Table 2,
which lists the change of variables from (3, 1») to (z1, z2), the ranges of values for (z, z,) and the expression
for y. The corresponding equations for the six odd-numbered cases and case (xii) follow.

The transformed equations for the seven basic cases are (after clearing fractions and canceling common
factors):

Case (i):
25(22—21) =2z + 2z (25)
Vz12p = dz

Case (iii):

2022~ 21 = 2a]’ =2 +23 - 27 (26)
Zz[(l — U)Zl + vzy — 2&0] +oa-=0
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Table 2
The (z;,z,) variables and their ranges for cases (i)—(xii)
Case z z Ranges of (z1,2,) y>0
1) 24+ 24+ a<z1 <z <1 z — 23
(ll) 27_)/'1 27}/2 a<z <z <1 zZ1 —Ip
(iii) 2(1 =)+ 3 2+ 7 < —o,a <z <1 2~z — 20
(IV) 27_)/'1 2(170()7)/2 0(<Z]<1,Zz<706 zy —zy — 20
(V) 2+y1 » O(<Z]<17—1<22<1 z—z1+2
(Vl) » 27)/2 71<Zl<1,01<22<1 2722721
(Vll) 2(1 — d) +» » z1 < —%7—1 <z<l Zy — 2z +2(1 —fX)
(Vlll) » 2(170()7}/2 1<z < 1,Zz<70( 2(170()721 —
(ix) 2(1 — o) + 7 2—» 1< —oa<z <1 22—0)—z — 2
(x) 24y 2(1 — o) — »» <z <l,zp < —u 22—0)—z1— 2z
(xi) 24+ 2—» a<zi<lyo<z <1 4—z1—2
(xii) 2(1 —a) +n 2(1 —a) =y z; < —0,zp < —0 41 —a)—z— 2
Case (v):
25[22—214—2]2:2—2%—25 27
g2 A S (27)
Z][UZ]-(U—O()Zz—2U]+OC =0
Case (vii):
2
25[22_— 1+ %(1 —a)F =2(1 - ) 73—z (28)
(1-0)z1+(0B—0})z+2(1—a)5=0
Case (ix):
W22 —a)—z—z] =2 +22 -2 (29
22[—(1 — l_J)Zl + vz — 2(2 — OC)I_)] + 062 =0
Case (xi):
2[4 —z—z) =2-2 (30)
52122(21 +Zz) — 41_72122 + OCZ(ZI +Zz) = 0

Case (xii):

{25[(1_@_21_22]2 -2
(1 -2)(z1 +22) +4(1 =)o =0
)zy

For (i), substitution of z; = («?/v

[ > 20 + 1 (> 20— 1 (32)
27V ) Vao—1 T\ ) Vas+1

The requirement that y = z, — z; > 0 shows that 6 > 1/2; the further requirement that the upper and lower
bounds on a(x) be met, here appearing in the form that o < z; < z; < 1, leads to the final range on ¢ for
solutions for case (i) to exist:

! from the ¥ equation in the & equation leads to

>% (33)

7402 1470

§>0=-max | —— ,——
7—02’'1 -7

2

The first of these governs when the area at the lower end x = 1 of the rod is reduced to a; while that at the
upper end x = 0 is still below a,; the second controls when the latter bound is first attained. The two bounds
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are equal when v = o; that is, when 4 equals the geometric mean /44, of the upper and lower section size
bounds. Thus case (i) gives solutions for all 4 > §, giving way to case (iii) when v > « and J drops below

1 (1+09)
i __ © ) 34
max 2 (1 _ I_J) ’ ( )
it changes to case (v) when o < o and ¢ drops below
v _ 1@+
max E (f) — aQ) (35)
and it passes to case (vii) when
_ 11+«
v =0, 5751_05 (36)

at the common point in Fig. 6 where cases (i)—(iii)—(v)—(vii) meet.
For case (xii), the value of z; 4 z, is given immediately by the fixed volume equation. The other equation
then can be solved for z, — z; resulting in
2(l —a)o 4(1 —a)o
zZ] = — — — N
1-9 o(1 — )
2(1 —a)o +4(1 —a)d
1—-o o(l —v)

(37)

Zy = —

This solution holds as ¢ increases until the a = a, region next to x = 1 “disappears’’; that happens when
zp = —o at

gui 0[(2 —a)v —df

i (38)

This is the equation of the boundary between cases (xii) and (ix) in Fig. 6. Its graph is a piece of parabola
opening upward to the right of the minimum point of the parabola. It starts at zero at the point v = o/
(2 — o) where cases (xi), (xii), and (ix) (and (x) also for negative J) come together, and rises monotonically to
0 =1/2 as v approaches 1.

The equations of the other boundaries in Fig. 6 are routinely established by comparing the equations for
each type at the z; or z, value where the cases meet. Cases (ix) and (vii) meet when their common z, = 1, and
lead to another parabola for ¢ as a function of o:

5i (=) (T )’ —2(1+ o+ 262)5 + 2(5 — )’ (39)
max 2(1 —a)(3 + )’

One may check that this goes through the common (v)—(vii)—(ix)—(xi) point at its left end and goes to

o=1/2atvo=1.
The (iii)—(vii) boundary is also a parabola opening upwards:
i 124 1 1]
5ml'¢lx|17>oc = - 2+ 2 |:U <O(+):| (40)
4l—a)y (1-0o 2

This starts at the common point for (i)—(iii)—(v)—(vii) at o =, 0 = (1 + &) /2(1 — &) and goes to 6 = 1/2 also
at o = 1. It has a minimum value given by the first term at o + 0.5 when o < 0.5; this minimum value itself
has a minimum of 1/4 in 0 < o < 0.5 so that the (iii)—(vii) boundary is always above 1/4.

The boundary between (i) and (iii) was given earlier in the solution for case (i), also holding only for
v > o. The (1)—(v) boundary was found there also, holding for v < a.
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The next boundary down is that between (v) and (vii). It is a segment of a parabola opening downward
to the left of where the maximum point would be, rising monotonically from the (v)—(vii)—(ix)—(xi) common
point to the (i)—(iii)—(v)—(vii) point:

. 2 —o? 1 2\1?
5::4)(17 @ - v— O(+—>:| 41
o< 41 —a)*  o2(1 —a)z[ ( 2 “

The two remaining boundaries are the (v)—(xi) and the (ix)—(xi) ones. These are best given parametrically.
For (v)—(xi)

2
Xi 1 —z

_ - 2 as 2 _
max|5<% - 2(3 _ 21)27 UZ% + (0( 3U)Z] + o 0. (42)
Here in the solution for z; the minus sign is chosen before the square root in the quadratic equation formula
so that z; will run from 1 to o as v goes from o? to a(1 + «)/(3 — «).

For the (ix)—(xi) boundary,

CXi

2 _ 2
| g = 5« 2

m, vz5 + (0 — (4 — 0)0)zy + o° = 0. 43)

For this J to be 0 where o = o/(2 — «) at the common (ix)—(xi)—(xii) point, where z, = «, the minus sign
must be chosen in the quadratic equation formula. At the other end where o = a(1 + «)/(3 — «), the value
of z, will be (3 — a)/(1 + «) and ¢ will be the desired

1—o?

max st = 206 a) (44)

This completes the description of Fig. 6.

7. The solution process for cases (iii)—(xi)

Solution of the (z;, z;) equations for the remaining five cases must be numerical for different choices of
the parameters. These solutions can be guided by study of the equations and their interpretation as curves
in the (z;, z;) plane.

The case (iii) Eq. (26) repeated here are

22[(1 — E)Zl + vz, — 20(1_7] + 062 =0
20[zy —z1 — 20" =22 + 22 — 202

The first equation is that of a family of hyperbolas in the (z;, z;) plane with asymptotes readily apparent
from the equation. The branch used is that for z, > 0, z; < 0 since the admissible region is o < z; < 1,
z1 < —p. All the hyperbolas go through the corner z, = a, z; = —a of this region, but this is not a possible
solution point since it lies on the line y =z, — z; — 20 = 0. The lowest value of v at which a hyperbola
touches the admissible region again is ¥ = a, at the corner z, = 1, z; = —o. For v increasing, the hyperbola
will cut through the admissible region from somewhere on the line z; = —o to the line z; = 1. Solutions will
lie on this arc of hyperbola where the graph of the other equation cuts it.

The second equation is a conic section with discriminant 4(40 — 1). Earlier the boundary in Fig. 6 be-
tween the (iii) and (vii) regions was shown to have a minimum value greater than 1/4, so this discriminant is
positive and the curve is also a hyperbola. Its equation can be written as
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4o
T 45 —1

8o

T 451 (45)

2
(45—1)[22—21 } — (22 +Zl)2
which is that for a rectangular hyperbola relative to axes rotated 45° from the (z;, z;) axes and with origin at
Zy) = —zZ1 = 4065/(4(5 — 1)

For case (v), the ¥ equation is again a hyperbola. The  equation has discriminant —4(46 + 1) and so
graphs as an ellipse for 6 > 0. The asymptotes for the hyperbolas can be seen from the first of Eq. (27)

{Z] [l_)Zl — (1_) — 062)22 — 25] + 0(2 =0

20|zy — z1 + 2]2 =2-z22-2 (46)

All hyperbolas pass through the point z; = —1, z; = 1 at the corner of the admissible region —1 < z; < 1,
o < z; < 1 and again this does not represent a solution since it lies on the y = 0 line. No solutions exist for
? > o, the first intersection with the admissible region occurring at © = «, at the corner z; = —1, z; = a. For
each lower value of v, there is a hyperbola entering the region at z; = —1 and leaving on z; = o, with an arc
of the hyperbola in the admissible region where solutions can lie.

The other equation can be rewritten as

L 8041
AT s

1

2
2_
] tHata) =

(46 —1) {22 - (47)
This an ellipse with principal axes rotated 45° from (z;, z;) and center shifted.
Case (vii) apparently should allow for a closed-form solution in the same way that (xii) did, since the

equations of (28) for (vii) are also those of a straight line and a hyperbola:

{ (1-0)z1+(0—02)z+2(1 —a)v =0
20[z — 21+ 2(1 — ) =2(1 — o?) + 22 — 2

with the discriminant of the hyperbola equal to 4 for all 6. However, the algebra is messy and there are
actually three subcases for the hyperbola family. Its equation can be rewritten in a form making the asymp-
totes apparent:

(22— 21)[(20 4+ 1)z5 — (20 — 1)z + 8(1 — 2)d] = 2(1 — o?) — 8(1 — «)? (48)

While the asymptote z, = z; holds for all the hyperbolas, the other changes the sign of its slope as 6 changes
from values above 1/2 to values below 1/2. Tts intercept with the z, axis is at —8(1 — «)d/(26 + 1), which is
always less than —2(1 — a).

Case (ix) has Eq. (30) represented by hyperbolas for the © equation but by either hyperbolas or ellipse for
the ¢ equation:

{zz[—(l —0)z; + 0z — 22— 2)v] + 2 =0

W22 —a)—z —z =2 +22 222 (49)

The discriminant of the second equation is 4(40 — 1) and so 0 > 1/4 corresponds to hyperbolas and 6 < 1/4
to ellipses.

Case (xi) has its ¢ equation represented by a family of hyperbolas again, with the discriminant of the
hyperbolas equal to 4 for all §:

{l_)ZlZz(Zl +Zz) — 41_)2122 + O(z(Zl +Zz) =0

20[4—z—z) =22 (50)

The asymptotes for the hyperbolas are easily identified by rewriting the latter equation:
(z1 +22)[(20 4+ 1)zy + (20 — 1)z, — 160] + 320 =0 (51)
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The branch of the hyperbola which opens towards +z, is to be selected. Note that the maximum value of §
which is attained at the (v)—(vii)—(ix)—(xi) common point is less than 1/2, so that the coefficient (26 — 1) of z,
in the brackets is negative.

The other equation represents a cubic curve and other than the symmetry of interchange in z; and z,
there seems to be nothing obvious about the nature of the curve. It is possible by introducing new variables
s = z123, t = z1 + 2z, to show that the curve is a hyperbola in the (s, f) plane:

(S+%2>(t—4)+4%2=0 (52)

It is also possible to show that the pair of equations is equivalent to a single explicit fifth-order polynomial
in t = z; + z; by solving the 6 equation for z; — z; and substituting in the other:

Plot(4 — 1) — 44%] = 406%(4 — 1)’ (53)

8. Formulas for computing the value of the potential energy

The potential energy functional can be rewritten as

n:/ x)dx = / X)[Ao + (A(x) — ﬂvo)]dxiot_er/Ola(x)(i(x)io)dx (54)

We see that the value of n for comparison theorem designs differs from Aya by terms arising from intervals
where a(x) equals one of its bounds, positive where a = a, and 1 > 4y and negative where a = a; and 4 = /g

For cases (i) and (ii)) where A = Jy everywhere, = = 4ya and is easily calculated from the exact solution.
For (i)

(26 — 1) (55)

oolaw

holding for those values of ¢ for which (i) gives the optimal solution. If this is compared to the energy for
the constant-section solution

:%{(25—1)2—2] (36)

we see that n') is always greater than 7 by the constant amount a/6.

For the remainder of the cases, numerical results must be calculated. Formulas for these depending on
the y or z variables can be found, with the additional integral giving terms that are at most cubic in the
variables. Formulas for the cases when ¢ > 0 follow.

Case (iii):
4 (202 — 22)
i — 13 1
VT 3aloc+3azzl aj P s (57)
V=2 — 21 — 20
Case (v):
2"/37'5:7&61 +aiz1 — 2a1z, + a1z°z Jrgaz3
3 121 122 15122+ 3 Iz, (58)

y=z23—z1+2
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Case (vii):

4 1 2
2931 = —gal(l —a) = 2a1z,(1 — o) + fazzf + alz%zz —|—falz§,

3 3 (59)
V=2 —Z +2(1 —(X)
Case (ix):
4 1 (202 — 22)
37 _ 13 1
29°m = 3a1(2 oc)+3azzl+a1722 , (60)
Y= 2(2— O() — (21 +Z2)
Case (xi):
3 8 1
2])7'5:—5611—{-611214-&12—2, (61)
Y= 4 — (Z] +22)
Case (xii):
8 1 2
2937 = —501(1 —o) + gazz‘; + azz%zz — gazzg, 62)

y=4(1 —a) — (z1 +2)

9. The rod with lower end free

The solution for the hanging rod with free lower end can be deduced from the work above. Since the
load and strain at x = 1 or y =y, is zero, we must have in the master function the value y, coming at the
midpoint of the minimum section interval, i.e., y» = 0. From Fig. 5, we see that the optimal solution must
correspond to case (v) or case (vii), with the former holding for smaller values of the prescribed volume and
the latter for larger values.

By substituting y» = 0 in the (v) and (vii) equations, solving the volume equation for y; and then using
the  equation, we can find the & vs. v behavior. For case (v), when o lies in the range (%, v* = «/(2 — )),
this corresponds to y; in (—1, —(2 — a)) with

(63a)

and

_2-(2+n)
27

(63b)

Thus ¢ will drop from 1/2 (the value of the end deflection for a constant-section rod with free lower end) to
2 — 2
=" (64)
2(2 —a)

in the case (v) region.
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For case (vii), where v* <7< 1, we find

1, 1(1+a) 2
== — 1-70).
d 50 —|—4(1_a)( D) (65)
This 6 equals 6" at o = v* and 1/2 at = 1. It has a minimum value
2 1+« 1
5—2(3_a)<§ (66)

atv="0=(1+a)/(3 — o), where " <v < 1.

10. The “max-min” problem with no upper bound on area

If the only inequality constraint on a(x) is a lower bound constraint a; < a(x), then the “max-min”
problem becomes somewhat simpler. Only five cases instead of 12 are involved in the answer, corresponding
to cases (1), (i), (v), (vi), and (xi) above. The master functions have three parts instead of five and are easily
constructed:

aj

G ST
a'(y) =4 a, -1<y<l1 (67)
(2a1 3, l<y<2
1
5(2+J/)2
* bR 1
uw(y)+ iy = 1—5)/2 (68)
1 2
5(2-»)
2
0
) —d=4 -1 (69)
0

The equations for the five cases are formulated as before by imposing the displacement boundary condi-
tions and volume constraint on functions derived from the master functions using the x to y mapping. Call
the five cases here (A), (B), (C), (D), (E), with (A) and (C) corresponding to positive J values, (B) and (D) to
the “reflected” compressive values, and (E) to values of ¢ straddling zero. It suffices to set and solve the
equations for (A), (C), and (E), with (A) solvable in closed form. The equations are written using the ratio
V= Zz/al > 1.

Case (A): 2<y<pm<—-Ly=y$-—n

29200 = (2 +J’1)2

26 = (24») - 2+n)’ (70)
A Y

p =

R 2
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Case (C) =2 <y <—-l<ym<lyy=m—y:

2))220 = (2 +y1)2
2y25:2—y§—(2+y1)2 (71)
W=n+

2+ n
Case (E): 2 <y <—-1,1<»m<2)y=»m—n:

2950 = 24+ n)
2)/25 = (12 — y2)2 1— (2 +y1)2 (72)

L R
! 2-» 2+4+n

Case (A) is solved in the same way as case (i) above, giving

oy = L 2ol
ATeTn =V 2+ 1 73
1 /2041
SRRV b
This solution holds only for
1{o+1
© _1 N
0 > O 2(13_1)’ v>1 (74)

Case (C) holds for each & for & values between 6'<) and 6') . The value of 8\) is found by comparing the
equations for (C) and (E) at their common value of y, = 1. A parametric equation for 6 is

max

o), — - Gl A7) (75a)
2(1=m)
with
. 1+ﬁ+«/(921;—1)(ﬁ—1) | (750

If one were to plot a figure like that of Fig. 6 here, one would find a three-region figure with (A) at top,
(C) in the central part, and (E) at the bottom with the boundary 553,((15) between (A) and (C) obtained as
though the common point in Fig. 6 between (i)—(iii)—(v)—(vii) moved down and to the right, approaching the
value § = 1/2 monotonically from above as & becomes unbounded. Similarly, the boundary 6\2) () between
(C) and (E) is obtained by having the common point between (v)—(vii)—(ix)—(xi) move up and to the right,
approaching the value 6 = 1/18 monotonically from below as ¢ becomes unbounded.

References

Cardou, A., Warner, W.H., 1974. Minimum-mass design of sandwich structures with frequency and section constraints. JOTA 14,
633-647.

Fosdick, R., Royer-Carfagni, G., 1996. The static state of a two-phase solid mixture in a stressed elastic bar. Int. J. Solids Struct. 33,
2267-2281.



W.H. Warner | International Journal of Solids and Structures 40 (2003) 611-631 631

Prager, W., 1971. Optimality criteria in structural design. AGARD Report no. 589-71.

Prager, W., Taylor, J.E., 1968. Problems of optimal structural design. J. Appl. Mech. 35, 102-106.

Warner, W., 2000. Optimal design of elastic rods under axial gravitational load using the maximum principle. Int. J. Solids Struct. 37,
2709-2726.

Warner, W., 2001. Optimal design of elastic rods: extension of a minimum energy solution. Int. J. Solids Struct. 38, 2879-2891.



	The maximum potential energy of elastic rods under axial gravitational load
	The maximum energy design problem
	Nondimensionalization--the comparison lemma for the rod
	Continuity of comparison theorem designs
	Solution forms in regions where a(x) or lambda(x) is constant
	The master generating functions for comparison theorem designs; the equations for the 12 cases
	The ranges of (delta, v) where each case is valid and the basic solution procedures
	The solution process for cases (iii)-(xi)
	Formulas for computing the value of the potential energy
	The rod with lower end free
	The ``max-min'' problem with no upper bound on area
	References


