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Abstract

An optimal design problem solved previously for an elastic rod hanging under its own weight found the distribution

of the cross-sectional area that minimized the total potential energy stored in an equilibrium state, with the admissible

designs bounded above and below and also subject to the constraint of prescribed total volume. This work solves the

companion problem of the design that stores the maximum potential energy under the same constraint conditions. The

method used is based on a comparison theorem for sandwich structures.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. The maximum energy design problem

The problem solved here is the determination of the distribution of the cross-sectional area AðX Þ and
associated axial displacement UðX Þ which maximizes the total equilibrium potential energy of an elastic rod
hanging vertically under its own weight:

max
A

ðmin
U

ðPðU ;AÞÞÞ ð1aÞ

where

PðU ;AÞ ¼
Z L

0

1

2
EAðX Þe2ðX Þ

�
� qgAUðX Þ

�
dX ð1bÞ

with the axial strain eðX Þ ¼ dU=dX . The admissible designs for cross-sectional area are positive, piecewise
continuous functions, bounded from above and below and satisfying the integral constraint of prescribed
total volume:

0 < A16AðX Þ6A2;Z L

0

AðX ÞdX ¼ LA; A1 < A < A2
ð1cÞ
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Kinematically admissible axial displacement functions UðX Þ are continuous functions with piecewise
continuous first derivatives satisfying displacement boundary conditions

Uð0Þ ¼ 0; UðLÞ ¼ D ð1dÞ
This problem is a companion to one solved earlier (Warner, 2000, 2001):

min
A

ðmin
U

ðPðU ;AÞÞÞ

under the same conditions on A and U . A reviewer of one of these papers suggested that it might be more
interesting physically to find the design that stored the maximum rather than the minimum potential energy

in the rod. This paper shows how that question can be answered. The method is not the Pontryagin

Maximum Principle used in Warner (2000, 2001) but is based on a comparison theorem for sandwich

structures that characterizes an optimal design if one exists. I note that the ‘‘min–min’’ problem was solved

essentially first by Fosdick and Royer-Carfagni (1996) in the context of mixture theory with a concentration
density rather than area as the design variable; their solution was found by a different method than mine.

The elasticity problem has solution that can be characterized by the Principle of Minimum Potential

Energy for each given area distribution: among all kinematically admissible displacement functions, the

solution displacement (which is unique) makes the functional P an absolute minimum. The Euler–Lag-

range equation for this variational principle is the equilibrium equation on force per unit length written as a

second-order differential equation on U :

d

dX
EA
dU
dX

� �
þ qgA ¼ 0 ð2aÞ

Introduction of the (continuous) axial force function PðX Þ and the elastic law P ¼ EAe allows us to write
this last equation in the form

dP
dX

¼ d

dX
ðEAeÞ ¼ �qgA ð2bÞ

Three conclusions which will be useful later follow. First, from the elastic law, since P must be con-
tinuous, any discontinuity in A must occur where e is also discontinuous unless P ¼ e ¼ 0 at the point of
discontinuity. Second, since A > 0, P is monotone decreasing and so can have at most one zero. That is, the
rod can be all in tension or all in compression or may be partly in tension and partly in compression with

the tension side at the top of the rod next to the end X ¼ 0. Lastly, since AðX Þ occurs homogeneously in the
equilibrium equation, AðX Þ can be scaled by any multiplicative factor without changing the solution for
UðX Þ. The value of the potential energy functional P is then subject to the same scaling as A.
A nondimensional form of the problem is stated next. The comparison theorem is then derived. Ar-

guments based on the continuity of the axial force show that a design satisfying the comparison theorem

must be continuous and must consist of one-to-five subdesigns in a particular order, for a total of 12

possible cases depending on the parameters of the problem. A master area function and its associated axial
displacement are constructed from which the equations for all 12 cases can be derived. The nature of the

solution to these equations is discussed with those that can be solved in closed form presented explicitly.

The solution procedure for the problem when no upper bound on section size is prescribed will be

summarized. The solution for the hanging rod with its lower end free will also be discussed.

2. Nondimensionalization––the comparison lemma for the rod

The rod problem falls into the class of optimal design problems for sandwich structures: those for which
the elastic stiffness (here EA) and the body force or load coefficient (qgA) are both linear in the design
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variable (A). Construction of the solutions is based on a comparison theorem for sandwich structures of a
type derived by Prager and Taylor (1968) without upper and lower bounds on the design variable and by

Prager (1971) with a lower bound. The latter was used by Cardou and Warner (1974) to develop a design

rule for framed structures vibrating at a given frequency. Here the theorem characterizing globally optimal
solutions is proven with both bounds present and applied to the rod problem.

It is best to nondimensionalize the problem in order to keep the notation as simple as possible in the

analysis. Change from fX ;A;U ; P ; e;Pg to fx; a; u; p; g; pg by setting

X ¼ Lx; AðX Þ ¼ bAAaðxÞ; UðX Þ ¼ qgL2

E
uðxÞ

P ðX Þ ¼ qgLbAApðxÞ; eðX Þ ¼ qgL
E

gðxÞ

PðU ;AÞ ¼ q2g2L3bAA
E

pðu; aÞ

ð3Þ

Because of the scaling property on AðX Þ mentioned in Section 1, the choice of the reference area bAA is
arbitrary, with A1 or A2 natural choices. In Warner (2000) (with a similar construction occurring in Fosdick
and Royer-Carfagni (1996)) it was taken for the min–min problem as a weighted harmonic mean of the

bounding values with the weighting ratios dependent on all three of A1, A2 and �AA. I shall not make a choice,
however, but leave it unspecified so that the dependence of the results on the ratios of the area parameters is

clear. Comparison of the energy values here to those in Warner (2000) will require accounting for the area

scaling.

In this process, the nondimensional ratio qgL=E has been incorporated in the changes of variables rather
than left as a parameter in the statement of the problem. The value of this ratio for a rod five meters long

made of steel with qg ¼ 77 kN/m and E ¼ 200 GPa is about 2� 10�6. The value of the nondimensional end
displacement d will then equal about 5000 for an actual elongation D ¼ 0:01L and about 500 for

D ¼ 0:001L. Thus jdj can be ‘‘large’’––even a ‘‘compression’’ apparently much, much greater than the
‘‘undeformed length’’ of 1.

In the new notation the problem becomes that of finding aðxÞ and uðxÞ such that they solve

max
a

min
u
ðpðu; aÞ

�


Z 1

0

aðxÞkðxÞdxÞ
�

ð4aÞ

with the energy density function

kðxÞ ¼ 1
2

g2ðxÞ � uðxÞ ð4bÞ

and

du
dx

¼ g; uð0Þ ¼ 0; uð1Þ ¼ d ¼ E
qgL2

D ð4cÞ

0 < a16 aðxÞ6 a2;Z 1

0

aðxÞdx ¼ �aa; a1 < �aa < a2
ð4dÞ

Here ða1; �aa; a2Þ ¼ ðA1; �AA;A2Þ=bAA. The equilibrium equation becomes

dp
dx

¼ d

dx
ðagÞ ¼ d

dx
a
du
dx

� �
¼ �a ð5Þ
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The derivation of the comparison theorem follows. Suppose u�ðxÞ solves the elasticity problem for the

design a�ðxÞ and u��ðxÞ solves it for a��ðxÞ. Then the difference between the two actual solution values of the
potential energy can be written and transformed as follows:

pðu�; a�Þ � pðu��; a��Þ ¼
Z 1

0

fa�k� � a��k��gdx ¼
Z 1

0

a��fk� � k��gdxþ
Z 1

0

fa� � a��gk�dx

¼ pðu�; a��Þ � pðu��; a��Þ þ k0

Z 1

0

fa� � a��gdxþ
Z 1

0

fa� � a��gfk� � k0gdx

Here k0 is any number. The first two terms taken together are positive by the Principle of Minimum Po-

tential Energy for the design a�� since u� is admissible in that variational competition. The next integral will
be zero if both a� and a�� satisfy the fixed-volume constraint. In the last integral, the first factor must be
nonnegative for all admissible a�� wherever a� ¼ a2 and nonpositive wherever a� ¼ a1. Thus we have the
following theorem.

Comparison Theorem. Suppose that, for an admissible design a�ðxÞ and its associated elastic solution functions,

there exists a number k0 such that

k�ðxÞ � k0 P 0 wherever a�ðxÞ ¼ a2
k�ðxÞ � k06 0 wherever a�ðxÞ ¼ a1
k�ðxÞ � k0 ¼ 0 wherever a1 < a�ðxÞ < a2

Then the last integral as well as the first two terms in the difference of the potential energies will be nonnegative

for all other admissible designs a��ðxÞ and so a�ðxÞ will be a solution of the maximum stored potential energy

problem.

Designs aðxÞ that satisfy these conditions are easy to construct. They must be continuous and are made
up of standard pieces joined together in which either aðxÞ is at one of its bounds or else the associated
energy density kðxÞ is a constant k0. There are 12 cases in all, of which seven must be considered in full
detail; the other five can be found from the solutions of members of the first seven by changing the sign of

the prescribed deflection and appropriately interchanging values of the solution terms. The best way of

organizing the information that I have found is not by constructing each type independently but by con-
structing a ‘‘master’’ area function and its associated displacement covering all possibilities without regard

to the displacement boundary conditions or the integral constraint and then showing how each case can be

obtained by translating and scaling the independent variable in the master functions to put the endpoints of

the rod at their proper positions so that the boundary conditions are satisfied and the volume constraint is

met.

3. Continuity of comparison theorem designs

As stated earlier, the area aðxÞ and the strain gðxÞ must be continuous or simultaneously discontinuous
except possibly for a case where p and g vanish at a discontinuity in a. This last possibility is ruled out by
the construction given later. That a discontinuity cannot occur where p is not zero in a comparison theorem
design follows from the fact that the product of a and gmust be continuous at such a point and so the strain
on the side of the join with larger a value must be less than the strain on the side with smaller a. But then the
value of kðxÞ on the side with larger a would also be less than that on the side with smaller a and so violate
the comparison theorem conditions on the sign of k � k0 in the different regions.
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Thus aðxÞ must be continuous unless the exceptional case of p ¼ 0 at the jump occurs. Even if this were
possible, however, note that gðxÞ must be zero there and so g and k would be continuous even if a were not.

4. Solution forms in regions where a(x) or k(x) is constant

In an interval where aðxÞ is any constant, the equilibrium equation becomes u00 ¼ �1 so that the dis-
placement, strain, and energy density have the forms

uðxÞ ¼ � 1
2
ðx� x̂xÞ2 þ ĝgðx� x̂xÞ þ ûu

gðxÞ ¼ ĝg � ðx� x̂xÞ

kðxÞ ¼ ðx� x̂xÞ2 � 2ĝgðx� x̂xÞ þ 1
2

ĝg2 � ûu

¼ g2ðxÞ � 1

2
ĝg2 þ ûu

� �

8>>>>>>><>>>>>>>:
ð6Þ

where x̂x is any point of the interval and ĝg, ûu are constants of integration giving the values of the strain and
displacement at x̂x.
In an interval where kðxÞ has a constant value k0, the formula defining k becomes a differential equation

to be solved for uðxÞ. The equilibrium equation then determines aðxÞ. The results are

uðxÞ ¼ 1
2
ðxþ ~xxÞ2 � k0

g ¼ xþ ~xx

aðxÞ ¼ ~aa

ðxþ ~xxÞ2

8>>>><>>>>: ð7Þ

where ~xx and ~aa are constants of integration to be determined along with the proper value for k0. The point
x ¼ �~xx cannot lie in the interval if aðxÞ is to remain bounded.
There are two branches to the curve aðxÞ, one on either side of the point �~xx. In any interval of this type

either the branch where xþ ~xx > 0 or the branch where xþ ~xx < 0 must be selected. By examining the de-
rivative of aðxÞ in each interval, one finds that aðxÞ decreases monotonically in the former case with gðxÞ and
pðxÞ ¼ ~aa=ðxþ ~xxÞ positive there with the opposite results holding where xþ ~xx < 0. Thus the rod is in tension
in a xþ ~xx > 0 interval and in compression in a xþ ~xx < 0 interval.
This means that pðxÞ can never be zero in a k ¼ k0 interval including its endpoints. Since p is mono-

tonically decreasing, it follows that if both types of k0 intervals are present, the tension region must lie
above the compression region and be joined to it by a constant section region. This latter must necessarily

have aðxÞ at its lower bound value, since aðxÞ decreases in the tensile region and increases in the com-
pressive. Moreover, since kðxÞ is continuous it must be equal to k0 at the ends of this minimum section
region. It will then be less than k0 throughout the region since its graph is a parabola concave upward, one
of the conditions for a comparison theorem design. More, p and g must vanish at the midpoint of this
region.

It follows that a region at maximum section size must have one end at x ¼ 0 or x ¼ 1 and the other joined
continuously to a k0 region. A region at minimum size may also be at either end of the rod joining a k0
region at its other end or (as we have just shown) lie entirely within the interval between two k0 intervals. A
k0 interval can occupy all of (0, 1) or be part of a number of different orderings involving two to five re-
gions. Since the whole rod cannot be at maximum or minimum size because of the fixed volume constraint
and since we have the monotone nature of pðxÞ to consider, we can conclude that the only possibilities must
be drawn by starting somewhere in the ordering a2–k0 (with decreasing a)–a1–k0 (with increasing a)–a2
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again, with the ending point somewhere later in this sequence. There are 12 such choices possible: two with

k ¼ k0 for all x, one totally in tension, the other in compression; four two-region designs, a2–k0, k0–a1, a1–k0
and k0–a2; three with three regions, a2–k0–a1, k0–a1–k0 and a1–k0–a2; two with four regions, a2–k0–a1–k0 and
k0–a1–k0–a2; and one with all five. Though each of these can be constructed directly for x in (0, 1) using
continuity of a, g, and k at the join points together with the displacement boundary conditions and the
volume constraint to determine all the constants of integration, the whole computation set can be organized

by computing a master area function on the whole line for the ordering of the five possible regions given

above and then showing how the rod solutions can be found by imposing the boundary and constraint

conditions to show where on the line the x ¼ 0 and x ¼ 1 points should lie. This construction is given next.

5. The master generating functions for comparison theorem designs; the equations for the 12 cases

I construct a function a�ðyÞ, �1 < y < þ1, that is bounded above and below: a16 a�ðyÞ6 a2 even
about y ¼ 0 which is taken as the midpoint of the region at minimum section size a1 and consists of five
sections in the order discussed above. If the endpoints of this middle section at minimum size are taken at

y ¼ �1, then it is an exercise in algebra from the continuity conditions at either end of the k0 regions to
show that the other ends of those regions must lie at y ¼ �ð2� aÞ, a ¼ pða1=a2Þ < 1, and to determine the
other constants of integration (except for the value to pick for k0):

a�ðyÞ ¼

a2; y6 � ð2� aÞ
a1=ð2þ yÞ2; �ð2� aÞ6 y6 � 1
a1; �16 y6 1
a1=ð2� yÞ2; 16 y6 2� a
a2; 2� a6 y

8>>>><>>>>: ð8Þ

The corresponding displacement, strain, and Lagrangian density functions are

u�ðyÞ þ k�
0 ¼

a2 � 1
2
½2ð1� aÞ þ y�2

1

2
ð2þ yÞ2

1� 1
2
y2

1

2
ð2� yÞ2

a2 � 1
2
½2ð1� aÞ � y�2

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð9Þ

g�ðyÞ ¼ du
�

dy
¼

�½2ð1� aÞ þ y�
2þ y
�y
y � 2
2ð1� aÞ � y

8>>>><>>>>: ð10Þ

k�ðyÞ � k�
0 ¼

1

2
g�2 � ðu� þ k�

0Þ ¼

½2ð1� aÞ þ y�2 � a2

0

y2 � 1
0

½2ð1� aÞ � y�2 � a2

8>>>><>>>>: ð11Þ
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Graphs of these functions are given in Figs. 1–4. Solutions for the rod are found from these by setting

y ¼ ðy2 � y1Þxþ y1 ¼ cxþ y1 so that the x-interval (0, 1) maps onto the y-interval (y1, y2). The values of the
(y1, y2) as well as the value of k0 are determined by applying the boundary conditions and volume constraint
to aðxÞ ¼ a�ðcxþ y1Þ, uðxÞ þ k0 ¼ c�2½u�ðcxþ y1Þ þ k�

0�. Expressed in terms of the universal functions, these
conditions become

k0 ¼ uð0Þ þ k0 ¼ c�2½u�ðy1Þ þ k�
0�

d ¼ c�2½ðu�ðy2Þ þ k�
0Þ � ðu�ðy1Þ þ k�

0Þ�
c�aa ¼

R y2
y1
a�ðyÞdy

8<: ð12Þ

The first of these determines k0 once the other two have been solved for (y1, y2). Table 1 presents the ranges
for (y1, y2) for each case as well as the form for computing k0. Fig. 5 shows the regions of the (y1, y2) plane
where the values for each case lie.

Fig. 2. The master displacement function u�ðyÞ þ k�
0.

Fig. 1. The master area distribution function a�ðyÞ.
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The other two equations for each case are listed next, with the first equation coming from the dis-
placement boundary condition at x ¼ 1 and the second from the fixed-volume integral constraint. The first
involves the parameters d and a but not �aa; the second involves a and �aa but not the extension d.

Fig. 4. The master energy density function k�ðyÞ � k�
0.

Fig. 3. The master strain function g�ðyÞ.
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Table 1

The (y1; y2) ranges and the k0 formula for cases (i)–(xii)

Case y1 range y2 range 2c2k0, c ¼ y2 � y1

(i) �ð2� aÞ < y1 < �1 �ð2� aÞ < y2 < �1 ð2þ y1Þ2
(ii) 1 < y1 < ð2� aÞ 1 < y2 < ð2� aÞ ð2� y1Þ2
(iii) y1 < �ð2� aÞ �ð2� aÞ < y2 < �1 2a2 � ½2ð1� aÞ þ y1�2
(iv) 1 < y1 < ð2� aÞ ð2� aÞ < y2 ð2� y1Þ2
(v) �ð2� aÞ < y1 < �1 �1 < y2 < 1 ð2þ y1Þ2
(vi) �1 < y1 < 1 1 < y2 < ð2� aÞ 2� y21
(vii) y1 < �ð2� aÞ �1 < y2 < 1 2a2 � ½2ð1� aÞ þ y1�2
(viii) �1 < y1 < 1 ð2� aÞ < y2 2� y21
(ix) y1 < �ð2� aÞ 1 < y2 < ð2� aÞ 2a2 � ½2ð1� aÞ þ y1�2
(x) �ð2� aÞ < y1 < �1 ð2� aÞ < y2 ð2þ y1Þ2
(xi) �ð2� aÞ < y1 < �1 1 < y2 < ð2� aÞ ð2þ y1Þ2
(xii) y1 < �ð2� aÞ ð2� aÞ < y2 2a2 � ½2ð1� aÞ þ y1�2

Fig. 5. Regions in the (y1, y2) plane where cases (i)–(xii) provide the optimal solution.

W.H. Warner / International Journal of Solids and Structures 40 (2003) 611–631 619



Case (i):

2c2d ¼ ð2þ y2Þ2 � ð2þ y1Þ2

c�aa ¼
R y2
y1

a1
ð2þ yÞ2

dy ¼ ca1
ð2þ y1Þð2þ y2Þ

8<: ð13Þ

Case (ii):

2c2d ¼ ð2� y2Þ2 � ð2� y1Þ2

c�aa ¼
R y2
y1

a1
ð2� yÞ2

dy ¼ ca1
ð2� y1Þð2� y2Þ

8<: ð14Þ

Case (iii):

2c2d ¼ ð2þ y2Þ2 � 2a2 þ ½2ð1� aÞ þ y1�2

c�aa ¼
R�ð2�aÞ
y1

a2 dy þ
R y2
�ð2�aÞ

a1
ð2þ yÞ2

dy

¼ �a2½2ð1� aÞ þ y1� �
a1

ð2þ y2Þ

8>>>><>>>>: ð15Þ

Case (iv):

2c2d ¼ 2a2 � ½2ð1� aÞ � y2�2 � ð2� y1Þ2

c�aa ¼ �a2½2ð1� aÞ � y2� �
a1

ð2� y1Þ

8<: ð16Þ

Case (v):

2c2d ¼ 2� y22 � ð2þ y1Þ2

c�aa ¼ a1y2 þ
a1

ð2þ y1Þ

8<: ð17Þ

Case (vi):

2c2d ¼ ð2� y2Þ2 � ð2� y21Þ
c�aa ¼ �a1y1 þ

a1
ð2� y2Þ

8<: ð18Þ

Case (vii):

2c2d ¼ ð2� y22Þ � 2a2 þ ½2ð1� aÞ þ y1�2
c�aa ¼ a1y2 � a2½2ð1� aÞ þ y1�

�
ð19Þ

Case (viii):

2c2d ¼ 2a2 � ½2ð1� aÞ � y2�2 � ð2� y21Þ
c�aa ¼ �a1y1 � a2½2ð1� aÞ � y2�

�
ð20Þ

Case (ix):

2c2d ¼ ð2� y2Þ2 � 2a2 þ ½2ð1� aÞ þ y1�2

c�aa ¼ �a2½2ð1� aÞ þ y1� þ
a1

ð2� y2Þ

8<: ð21Þ
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Case (x):

2c2d ¼ 2a2 � ½2ð1� aÞ � y2�2 � ð2þ y1Þ2

c�aa ¼ �a2½2ð1� aÞ � y2� þ
a1

ð2þ y1Þ

8<: ð22Þ

Case (xi):

2c2d ¼ ð2� y2Þ2 � ð2þ y1Þ2

c�aa ¼ a1
ð2� y2Þ

þ a1
ð2þ y1Þ

8<: ð23Þ

Case (xii):

2c2d ¼ ½2ð1� aÞ þ y1�2 � ½2ð1� aÞ � y2�2
c�aa ¼ �a2½2ð1� aÞ � y2� � a2½2ð1� aÞ þ y1�

�
ð24Þ

Establishing a procedure for the solution of these equations is straightforward. Except for a cubic

equation arising from the volume constraint in case (xi), all equations after clearing of fractions are linear

or quadratic. A geometric interpretation of the solutions as occurring at the intersection of a conic section

(mostly hyperbolas) with another conic or straight line can be made and guide the eventual need for nu-

merical solution in particular cases; cases (i), (ii), and (xii) are solvable in closed form.

Only the odd-numbered cases and case (xii) must be analyzed in detail. The solutions for the even-

numbered cases (ii)–(x) can be found from the solutions for the odd-numbered one just above it in the

listing. If (y1, y2) is the solution to an odd-numbered case (i)–(ix) for given d and �aa, then (�y2, �y1) will be a
solution to the associated even-numbered case for �d and �aa; moreover, the end displacement d will be
positive for the odd numbers, always representing extension, so that the even-numbered cases represent

compressive states. The same solution property holds for each of (xi) and (xii) individually; all solutions for

d ¼ 0 come from (xi) or (xii). These results follow from showing that the interchange of values and signs

transforms the equations of one case to another for (i) to (x) and does not change the equations for (xi) and

(xii) except for the sign of d.
The equations involving d are quadratic with the one for case (i) reducing to a linear equation once the

positive factor c ¼ y2 � y1 is divided out. The equations for (vii), (xi), and (xii) have hyperbolas as graphs.
Those for (iii), (v) and (ix) graph as hyperbolas or ellipses depending upon the value of d.
The prescribed volume equations also graph as hyperbolas in cases (i), (iii), (v), and (ix) but as straight

lines for (vii) and (xii). For (xi) a cubic equation occurs; its graph has symmetry properties that aid in its

analysis.

The scaling property of the area function is manifest from these volume equations: only the ratio of the

area parameters is needed. We have already introduced a where a2 ¼ a1=a2; the ratio �aa=a2 will be called �vv
and the equations rewritten using a and �vv.

6. The ranges of (d, v) where each case is valid and the basic solution procedures

The next step in the analysis is the determination of the ranges of values of d and �vv for which each case
occurs. This information is presented in Fig. 6 by displaying it as regions in the (d, �vv) plane for d > 0 where
the cases listed in the figure provide the optimal solution; reflection in the d ¼ 0 axis will provide the regions
for d < 0. The boundaries between the regions are found easily using the information in Fig. 5 about the
common y1 or y2 value at the boundaries.
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The closed-form solution for case (i) can be found by solving the volume equation for y1 as a function of
y2 and then substituting in the displacement equation. This is most easily done by introducing new variables
(z1, z2) equal to (2þ y1, 2þ y2) as the natural combinations appearing in the case (i) equations. Indeed all
the cases have certain obvious combinations of the y�s that should be used to simplify the equations and the
discussion of their properties. The transformations to the z�s appropriate for each case are given in Table 2,
which lists the change of variables from (y1, y2) to (z1, z2), the ranges of values for (z1, z2) and the expression
for c. The corresponding equations for the six odd-numbered cases and case (xii) follow.
The transformed equations for the seven basic cases are (after clearing fractions and canceling common

factors):

Case (i):

2dðz2 � z1Þ ¼ z2 þ z1
�vvz1z2 ¼ a2

�
ð25Þ

Case (iii):

2d½z2 � z1 � 2a�2 ¼ z21 þ z22 � 2a2
z2½ð1� �vvÞz1 þ �vvz2 � 2a�vv� þ a2 ¼ 0

�
ð26Þ

Fig. 6. Regions in the (�vv; d) plane for d > 0 where the seven basic cases provide the optimal solution.
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Case (v):

2d½z2 � z1 þ 2�2 ¼ 2� z21 � z22
z1½�vvz1 � ð�vv� a2Þz2 � 2�vv� þ a2 ¼ 0

�
ð27Þ

Case (vii):

2d½z2 � z1 þ 2ð1� aÞ�2 ¼ 2ð1� a2Þ þ z21 � z22
ð1� �vvÞz1 þ ð�vv� a2Þz2 þ 2ð1� aÞ�vv ¼ 0

�
ð28Þ

Case (ix):

2d½2ð2� aÞ � z1 � z2�2 ¼ z21 þ z22 � 2a2
z2½�ð1� �vvÞz1 þ �vvz2 � 2ð2� aÞ�vv� þ a2 ¼ 0

�
ð29Þ

Case (xi):

2d½4� z1 � z2�2 ¼ z22 � z21
�vvz1z2ðz1 þ z2Þ � 4�vvz1z2 þ a2ðz1 þ z2Þ ¼ 0

�
ð30Þ

Case (xii):

2d½4ð1� aÞ � z1 � z2�2 ¼ z21 � z22
ð1� �vvÞðz1 þ z2Þ þ 4ð1� aÞ�vv ¼ 0

�
ð31Þ

For (i), substitution of z1 ¼ ða2=�vvÞz�12 from the �vv equation in the d equation leads to

z2 ¼
affiffiffi
�vv

p
 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2d þ 1
2d � 1

r
; z1 ¼

affiffiffi
�vv

p
 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2d � 1
2d þ 1

r
ð32Þ

The requirement that c ¼ z2 � z1 > 0 shows that d > 1=2; the further requirement that the upper and lower
bounds on aðxÞ be met, here appearing in the form that a < z1 < z2 < 1, leads to the final range on d for
solutions for case (i) to exist:

d > ~dd ¼ 1
2
max

�vvþ a2

�vv� a2
;
1þ �vv
1� �vv

" #
>
1

2
ð33Þ

The first of these governs when the area at the lower end x ¼ 1 of the rod is reduced to a1 while that at the
upper end x ¼ 0 is still below a2; the second controls when the latter bound is first attained. The two bounds

Table 2

The (z1; z2) variables and their ranges for cases (i)–(xii)

Case z1 z2 Ranges of (z1; z2) c > 0

(i) 2þ y1 2þ y2 a < z1 < z2 < 1 z2 � z1
(ii) 2� y1 2� y2 a < z2 < z1 < 1 z1 � z2
(iii) 2ð1� aÞ þ y1 2þ y2 z1 < �a; a < z2 < 1 z2 � z1 � 2a
(iv) 2� y1 2ð1� aÞ � y2 a < z1 < 1; z2 < �a z1 � z2 � 2a
(v) 2þ y1 y2 a < z1 < 1;�1 < z2 < 1 z2 � z1 þ 2
(vi) y1 2� y2 �1 < z1 < 1; a < z2 < 1 2� z2 � z1
(vii) 2ð1� aÞ þ y1 y2 z1 < �a;�1 < z2 < 1 z2 � z1 þ 2ð1� aÞ
(viii) y1 2ð1� aÞ � y2 �1 < z1 < 1; z2 < �a 2ð1� aÞ � z1 � z2
(ix) 2ð1� aÞ þ y1 2� y2 z1 < �a; a < z2 < 1 2ð2� aÞ � z1 � z2
(x) 2þ y1 2ð1� aÞ � y2 a < z1 < 1; z2 < �a 2ð2� aÞ � z1 � z2
(xi) 2þ y1 2� y2 a < z1 < 1; a < z2 < 1 4� z1 � z2
(xii) 2ð1� aÞ þ y1 2ð1� aÞ � y2 z1 < �a; z2 < �a 4ð1� aÞ � z1 � z2
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are equal when �vv ¼ a; that is, when �AA equals the geometric mean
ffiffiffiffiffiffiffiffiffiffi
A1A2

p
of the upper and lower section size

bounds. Thus case (i) gives solutions for all d > ~dd, giving way to case (iii) when �vv > a and d drops below

diiimax ¼
1

2

ð1þ �vvÞ
ð1� �vvÞ ; ð34Þ

it changes to case (v) when �vv < a and d drops below

dvmax ¼
1

2

ð�vvþ a2Þ
ð�vv� a2Þ ð35Þ

and it passes to case (vii) when

�vv ¼ a; d ¼ 1
2

1þ a
1� a

ð36Þ

at the common point in Fig. 6 where cases (i)–(iii)–(v)–(vii) meet.

For case (xii), the value of z1 þ z2 is given immediately by the fixed volume equation. The other equation
then can be solved for z2 � z1 resulting in

z1 ¼ � 2ð1� aÞ�vv
1� �vv

� 4ð1� aÞd
�vvð1� �vvÞ ;

z2 ¼ � 2ð1� aÞ�vv
1� �vv

þ 4ð1� aÞd
�vvð1� �vvÞ :

ð37Þ

This solution holds as d increases until the a ¼ a2 region next to x ¼ 1 ‘‘disappears’’; that happens when
z2 ¼ �a at

dxiimax ¼
�vv½ð2� aÞ�vv� a�
4ð1� aÞ : ð38Þ

This is the equation of the boundary between cases (xii) and (ix) in Fig. 6. Its graph is a piece of parabola

opening upward to the right of the minimum point of the parabola. It starts at zero at the point �vv ¼ a/
(2� a) where cases (xi), (xii), and (ix) (and (x) also for negative d) come together, and rises monotonically to
d ¼ 1=2 as �vv approaches 1.
The equations of the other boundaries in Fig. 6 are routinely established by comparing the equations for

each type at the z1 or z2 value where the cases meet. Cases (ix) and (vii) meet when their common z2 ¼ 1, and
lead to another parabola for d as a function of �vv:

dixmax ¼
ð1� aÞð1þ aÞ2 � 2ð1þ a þ 2a2Þ�vvþ 2ð5� aÞ�vv2

2ð1� aÞð3þ aÞ2
ð39Þ

One may check that this goes through the common (v)–(vii)–(ix)–(xi) point at its left end and goes to

d ¼ 1=2 at �vv ¼ 1.
The (iii)–(vii) boundary is also a parabola opening upwards:

dviimaxj�vv>a ¼
1� 2a2

4ð1� aÞ2
þ 1

ð1� aÞ2
�vv
�

� a

�
þ 1
2

��2
ð40Þ

This starts at the common point for (i)–(iii)–(v)–(vii) at �vv ¼ a, d ¼ ð1þ aÞ=2ð1� aÞ and goes to d ¼ 1=2 also
at �vv ¼ 1. It has a minimum value given by the first term at a þ 0:5 when a < 0:5; this minimum value itself
has a minimum of 1/4 in 0 < a < 0:5 so that the (iii)–(vii) boundary is always above 1/4.
The boundary between (i) and (iii) was given earlier in the solution for case (i), also holding only for

�vv > a. The (i)–(v) boundary was found there also, holding for �vv < a.
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The next boundary down is that between (v) and (vii). It is a segment of a parabola opening downward

to the left of where the maximum point would be, rising monotonically from the (v)–(vii)–(ix)–(xi) common

point to the (i)–(iii)–(v)–(vii) point:

dviimaxj�vv<a ¼
2� a2

4ð1� aÞ2
� 1

a2ð1� aÞ2
�vv
�

� a

�
þ a2

2

��2
ð41Þ

The two remaining boundaries are the (v)–(xi) and the (ix)–(xi) ones. These are best given parametrically.

For (v)–(xi)

dximaxj�vv<að1þaÞ
3�a

¼ 1� z21
2ð3� z1Þ2

; �vvz21 þ ða2 � 3�vvÞz1 þ a2 ¼ 0: ð42Þ

Here in the solution for z1 the minus sign is chosen before the square root in the quadratic equation formula
so that z1 will run from 1 to a as �vv goes from a2 to að1þ aÞ=ð3� aÞ.
For the (ix)–(xi) boundary,

dximaxj�vv>að1þaÞ
3�a

¼ z22 � a2

2ð4� a � z2Þ2
; �vvz22 þ ða � ð4� aÞ�vvÞz2 þ a2 ¼ 0: ð43Þ

For this d to be 0 where �vv ¼ a=ð2� aÞ at the common (ix)–(xi)–(xii) point, where z2 ¼ a, the minus sign
must be chosen in the quadratic equation formula. At the other end where �vv ¼ að1þ aÞ=ð3� aÞ, the value
of z2 will be að3� aÞ=ð1þ aÞ and d will be the desired

dximaxj�vv¼að1þaÞ
3�a

¼ 1� a2

2ð3� aÞ2
: ð44Þ

This completes the description of Fig. 6.

7. The solution process for cases (iii)–(xi)

Solution of the (z1, z2) equations for the remaining five cases must be numerical for different choices of
the parameters. These solutions can be guided by study of the equations and their interpretation as curves

in the (z1, z2) plane.
The case (iii) Eq. (26) repeated here are

z2½ð1� �vvÞz1 þ �vvz2 � 2a�vv� þ a2 ¼ 0
2d½z2 � z1 � 2a�2 ¼ z21 þ z22 � 2a2

�
The first equation is that of a family of hyperbolas in the (z1, z2) plane with asymptotes readily apparent
from the equation. The branch used is that for z2 > 0, z1 < 0 since the admissible region is a < z2 < 1,
z1 < �q. All the hyperbolas go through the corner z2 ¼ a, z1 ¼ �a of this region, but this is not a possible
solution point since it lies on the line c ¼ z2 � z1 � 2a ¼ 0. The lowest value of �vv at which a hyperbola
touches the admissible region again is �vv ¼ a, at the corner z2 ¼ 1, z1 ¼ �a. For �vv increasing, the hyperbola
will cut through the admissible region from somewhere on the line z1 ¼ �a to the line z2 ¼ 1. Solutions will
lie on this arc of hyperbola where the graph of the other equation cuts it.

The second equation is a conic section with discriminant 4(4d � 1). Earlier the boundary in Fig. 6 be-
tween the (iii) and (vii) regions was shown to have a minimum value greater than 1/4, so this discriminant is

positive and the curve is also a hyperbola. Its equation can be written as
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ð4d � 1Þ z2

�
� z1 �

8ad
4d � 1

�2
� ðz2 þ z1Þ2 ¼

4a2

4d � 1 ð45Þ

which is that for a rectangular hyperbola relative to axes rotated 45� from the (z1, z2) axes and with origin at
z2 ¼ �z1 ¼ 4ad=ð4d � 1Þ.
For case (v), the �vv equation is again a hyperbola. The d equation has discriminant �4ð4d þ 1Þ and so

graphs as an ellipse for d > 0. The asymptotes for the hyperbolas can be seen from the first of Eq. (27)

z1½�vvz1 � ð�vv� a2Þz2 � 2�vv� þ a2 ¼ 0
2d½z2 � z1 þ 2�2 ¼ 2� z21 � z22

�
ð46Þ

All hyperbolas pass through the point z2 ¼ �1, z1 ¼ 1 at the corner of the admissible region �1 < z2 < 1,
a < z1 < 1 and again this does not represent a solution since it lies on the c ¼ 0 line. No solutions exist for
�vv > a, the first intersection with the admissible region occurring at �vv ¼ a, at the corner z2 ¼ �1, z1 ¼ a. For
each lower value of �vv, there is a hyperbola entering the region at z2 ¼ �1 and leaving on z1 ¼ a, with an arc
of the hyperbola in the admissible region where solutions can lie.

The other equation can be rewritten as

ð4d � 1Þ z2

�
� z1 þ

8d þ 1
4d þ 1

�2
þ ðz2 þ z1Þ2 ¼

1

4d þ 1 ð47Þ

This an ellipse with principal axes rotated 45� from (z1, z2) and center shifted.
Case (vii) apparently should allow for a closed-form solution in the same way that (xii) did, since the

equations of (28) for (vii) are also those of a straight line and a hyperbola:

ð1� �vvÞz1 þ ð�vv� a2Þz2 þ 2ð1� aÞ�vv ¼ 0
2d½z2 � z1 þ 2ð1� aÞ�2 ¼ 2ð1� a2Þ þ z21 � z22

�
with the discriminant of the hyperbola equal to 4 for all d. However, the algebra is messy and there are
actually three subcases for the hyperbola family. Its equation can be rewritten in a form making the asymp-

totes apparent:

ðz2 � z1Þ½ð2d þ 1Þz2 � ð2d � 1Þz1 þ 8ð1� aÞd� ¼ 2ð1� a2Þ � 8ð1� aÞ2d ð48Þ
While the asymptote z2 ¼ z1 holds for all the hyperbolas, the other changes the sign of its slope as d changes
from values above 1/2 to values below 1/2. Its intercept with the z2 axis is at �8ð1� aÞd=ð2d þ 1Þ, which is
always less than �2ð1� aÞ.
Case (ix) has Eq. (30) represented by hyperbolas for the �vv equation but by either hyperbolas or ellipse for

the d equation:

z2½�ð1� �vvÞz1 þ �vvz2 � 2ð2� aÞ�vv� þ a2 ¼ 0
2d½2ð2� aÞ � z1 � z2�2 ¼ z21 þ z22 � 2a2

�
ð49Þ

The discriminant of the second equation is 4(4d � 1) and so d > 1=4 corresponds to hyperbolas and d < 1=4
to ellipses.

Case (xi) has its d equation represented by a family of hyperbolas again, with the discriminant of the
hyperbolas equal to 4 for all d:

�vvz1z2ðz1 þ z2Þ � 4�vvz1z2 þ a2ðz1 þ z2Þ ¼ 0
2d½4� z1 � z2�2 ¼ z22 � z21

�
ð50Þ

The asymptotes for the hyperbolas are easily identified by rewriting the latter equation:

ðz1 þ z2Þ½ð2d þ 1Þz1 þ ð2d � 1Þz2 � 16d� þ 32d ¼ 0 ð51Þ
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The branch of the hyperbola which opens towards þz2 is to be selected. Note that the maximum value of d
which is attained at the (v)–(vii)–(ix)–(xi) common point is less than 1/2, so that the coefficient (2d � 1) of z2
in the brackets is negative.

The other equation represents a cubic curve and other than the symmetry of interchange in z1 and z2
there seems to be nothing obvious about the nature of the curve. It is possible by introducing new variables

s ¼ z1z2, t ¼ z1 þ z2 to show that the curve is a hyperbola in the (s, t) plane:

s
�

þ a2

�vv

�
ðt � 4Þ þ 4 a2

�vv
¼ 0 ð52Þ

It is also possible to show that the pair of equations is equivalent to a single explicit fifth-order polynomial

in t ¼ z1 þ z2 by solving the d equation for z2 � z1 and substituting in the other:

t3½�vvtð4� tÞ � 4a2� ¼ 4�vvd2ð4� tÞ3 ð53Þ

8. Formulas for computing the value of the potential energy

The potential energy functional can be rewritten as

p ¼
Z 1

0

aðxÞkðxÞdx ¼
Z 1

0

aðxÞ½k0 þ ðkðxÞ � k0Þ�dx ¼ k0�aaþ
Z 1

0

aðxÞðkðxÞ � k0Þdx ð54Þ

We see that the value of p for comparison theorem designs differs from k0�aa by terms arising from intervals
where aðxÞ equals one of its bounds, positive where a ¼ a2 and kP k0 and negative where a ¼ a1 and kP k0
For cases (i) and (ii) where k ¼ k0 everywhere, p ¼ k0�aa and is easily calculated from the exact solution.

For (i)

pðiÞ ¼ �aa
8
ð2d � 1Þ2 ð55Þ

holding for those values of d for which (i) gives the optimal solution. If this is compared to the energy for
the constant-section solution

�pp ¼ �aa
8

ð2d
�

� 1Þ2 � 4
3

�
ð56Þ

we see that pðiÞ is always greater than �pp by the constant amount �aa=6.
For the remainder of the cases, numerical results must be calculated. Formulas for these depending on

the y or z variables can be found, with the additional integral giving terms that are at most cubic in the
variables. Formulas for the cases when d > 0 follow.

Case (iii):

2c3p ¼ 4
3
a1a þ 1

3
a2z31 � a1

ð2a2 � z21Þ
z2

;

c ¼ z2 � z1 � 2a
ð57Þ

Case (v):

2c3p ¼ � 4
3
a1 þ a1z1 � 2a1z2 þ a1z21z2 þ

2

3
a1z32;

c ¼ z2 � z1 þ 2
ð58Þ
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Case (vii):

2c3p ¼ � 4
3
a1ð1� aÞ � 2a1z2ð1� a2Þ þ 1

3
a2z31 þ a1z21z2 þ

2

3
a1z32;

c ¼ z2 � z1 þ 2ð1� aÞ
ð59Þ

Case (ix):

2c3p ¼ � 4
3
a1ð2� aÞ þ 1

3
a2z31 þ a1

ð2a2 � z21Þ
z2

;

c ¼ 2ð2� aÞ � ðz1 þ z2Þ
ð60Þ

Case (xi):

2c3p ¼ � 8
3
a1 þ a1z1 þ a1

z21
z2
;

c ¼ 4� ðz1 þ z2Þ
ð61Þ

Case (xii):

2c3p ¼ � 8
3
a1ð1� aÞ þ 1

3
a2z31 þ a2z21z2 �

2

3
a2z32;

c ¼ 4ð1� aÞ � ðz1 þ z2Þ
ð62Þ

9. The rod with lower end free

The solution for the hanging rod with free lower end can be deduced from the work above. Since the

load and strain at x ¼ 1 or y ¼ y2 is zero, we must have in the master function the value y2 coming at the
midpoint of the minimum section interval, i.e., y2 ¼ 0. From Fig. 5, we see that the optimal solution must
correspond to case (v) or case (vii), with the former holding for smaller values of the prescribed volume and

the latter for larger values.

By substituting y2 ¼ 0 in the (v) and (vii) equations, solving the volume equation for y1 and then using
the d equation, we can find the d vs. �vv behavior. For case (v), when �vv lies in the range (a2, �vv� ¼ a=ð2� aÞ),
this corresponds to y1 in (�1, �ð2� aÞ) with

y1 ¼ � 1

24 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �vv

a2

 !vuut 35 ð63aÞ

and

d ¼ 2� ð2þ y1Þ2

2y21
ð63bÞ

Thus d will drop from 1/2 (the value of the end deflection for a constant-section rod with free lower end) to

d� ¼ 2� a2

2ð2� aÞ2
ð64Þ

in the case (v) region.
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For case (vii), where �vv� 6�vv6 1, we find

d ¼ 1
2
�vv2 þ 1

4

ð1þ aÞ
ð1� aÞ ð1� �vvÞ2: ð65Þ

This d equals d� at �vv ¼ �vv� and 1/2 at �vv ¼ 1. It has a minimum value

d̂d ¼ 1þ a
2ð3� aÞ <

1

2
ð66Þ

at �vv ¼ �̂vv�vv ¼ ð1þ aÞ=ð3� aÞ, where �vv� 6 �̂vv�vv6 1.

10. The ‘‘max–min’’ problem with no upper bound on area

If the only inequality constraint on aðxÞ is a lower bound constraint a16 aðxÞ, then the ‘‘max–min’’
problem becomes somewhat simpler. Only five cases instead of 12 are involved in the answer, corresponding

to cases (i), (ii), (v), (vi), and (xi) above. The master functions have three parts instead of five and are easily

constructed:

a�ðyÞ ¼

a1
ð2þ yÞ2

; �2 < y6 � 1

a1; �16 y6 1
a1

ð2� yÞ2
; 16 y < 2

8>>>><>>>>: ð67Þ

u�ðyÞ þ k�
0 ¼

1

2
ð2þ yÞ2

1� 1
2
y2

1

2
ð2� yÞ2

8>>>>><>>>>>:
ð68Þ

k�ðyÞ � k�
0 ¼

0

y2 � 1
0

8<: ð69Þ

The equations for the five cases are formulated as before by imposing the displacement boundary condi-

tions and volume constraint on functions derived from the master functions using the x to y mapping. Call
the five cases here (A), (B), (C), (D), (E), with (A) and (C) corresponding to positive d values, (B) and (D) to
the ‘‘reflected’’ compressive values, and (E) to values of d straddling zero. It suffices to set and solve the
equations for (A), (C), and (E), with (A) solvable in closed form. The equations are written using the ratio

v̂v ¼ �aa=a1 > 1.
Case (A): �2 < y1 < y2 < �1; c ¼ y2 � y1:

2c2k0 ¼ ð2þ y1Þ2

2c2d ¼ ð2þ y2Þ2 � ð2þ y1Þ2

cv̂v ¼ c
ð2þ y1Þð2þ y2Þ

8>>><>>>: ð70Þ
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Case (C): �2 < y1 < �1 < y2 < 1; c ¼ y2 � y1:

2c2k0 ¼ ð2þ y1Þ2

2c2d ¼ 2� y22 � ð2þ y1Þ2

cv̂v ¼ y2 þ
1

2þ y1

8>>><>>>: ð71Þ

Case (E): �2 < y1 < �1; 1 < y2 < 2; c ¼ y2 � y1:

2c2k0 ¼ ð2þ y1Þ2

2c2d ¼ ð2� y2Þ2 � ð2þ y1Þ2

cv̂v ¼ 1

2� y2
þ 1

2þ y1

8>>><>>>: ð72Þ

Case (A) is solved in the same way as case (i) above, giving

z1 ¼ 2þ y1 ¼
1ffiffiffî
vv

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d � 1
2d þ 1

r
z2 ¼ 2þ y2 ¼

1ffiffiffî
vv

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d þ 1
2d � 1

r
8>>><>>>: ð73Þ

This solution holds only for

d > dðCÞ
max ¼

1

2

v̂vþ 1
v̂v� 1

 !
; v̂v > 1 ð74Þ

Case (C) holds for each v̂v for d values between dðCÞ
max and dðEÞ

max. The value of dðEÞ
max is found by comparing the

equations for (C) and (E) at their common value of y2 ¼ 1. A parametric equation for dðEÞ
max is

dðEÞ
max ¼ �ð3þ y1Þð1þ y1Þ

2ð1� y1Þ2
ð75aÞ

with

y1 ¼ � 1þ v̂vþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9v̂v� 1Þðv̂v� 1Þ

p
2v̂v

24 35: ð75bÞ

If one were to plot a figure like that of Fig. 6 here, one would find a three-region figure with (A) at top,
(C) in the central part, and (E) at the bottom with the boundary dðCÞ

maxðv̂vÞ between (A) and (C) obtained as
though the common point in Fig. 6 between (i)–(iii)–(v)–(vii) moved down and to the right, approaching the

value d ¼ 1/2 monotonically from above as v̂v becomes unbounded. Similarly, the boundary dðEÞ
maxðv̂vÞ between

(C) and (E) is obtained by having the common point between (v)–(vii)–(ix)–(xi) move up and to the right,

approaching the value d ¼ 1=18 monotonically from below as v̂v becomes unbounded.
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